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The attraction-limited cluster-cluster aggregation of two-dimensional Ising dipolar particles with or without
particle-size dispersity is studied. The fast decrease of the number of even-sized clusters for relatively smaller
clusters is observed. The threshold concentration is also determined, under which the dynamics of aggregation
is explained using the well-known dynamic scaling theory of Vicsek and Family. Above the threshold concen-
tration, the dynamics depends on particle-size dispersity. Furthermore, it is suggested that, even in the dilute
limit, the dynamic exponents are affected by the screening of the surrounding clusters on collision between two
clusters.
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I. INTRODUCTION

The structure formation in a monolayer of dipolar par-
ticles has been a subject of academic and practical interest
for several decades for the following reasons. Dipolar par-
ticles have long-ranged anisotropic dipole-dipole interaction,
and they are readily controllable using external fields. In the
absence of external fields, they form randomly oriented
chains, closed rings, and fractal aggregates �1–3�. In an ex-
ternal field, in contrast, they form chains in the direction of
the field �2,4–6�, or a crystal structure emerges if the angle
of the field with a surface tangent is larger than a threshold
angle �7,8�.

Cluster-cluster aggregation �CCA� in such a system be-
comes more complicated than that of particles that experi-
ence shorter-ranged interactions �2–6�. For the latter case,
sticking and breakup probabilities between clusters play es-
sential roles, and several models like diffusion-limited CCA
�DLCA� are known �9�. In contrast, for the former case, the
geometric and dynamic features of CCA depend on details of
the interactions, e.g., the magnitude of dipole moments and
that of an external field. If the contribution of these quantities
to CCA is as large as or larger than that of thermal diffusion,
it appears that the behavior of CCA deviates from the
predictions using simple models, such as DLCA. Although
there have been several studies of CCA of dipolar particles,
the comprehension of CCA of dipolar particles is far from
complete.

Recently, Varga et al. have proposed unusual system of a
monolayer of dipolar particles �10�. In their system, the par-
ticles are confined to a plane and have Ising dipole moments,
i.e., their dipole moments are constrained to be perpendicular
to the plane. Thus, we call them Ising dipolar particles
�IDPs�. IDPs are classified into two components depending

on whether their dipole moments point upward or downward.
These components may also differ in other physical proper-
ties, e.g., the magnitude of dipole moments and the size of
particles. IDPs in a plane are expected to be a simple and
relatively natural model because they experience isotropic
interaction and can be regarded as oppositely charged par-
ticles. Since these charges frustrate the particles, they show
rich varieties of structure formation �10�.

To date, two physical realizations of IDPs in a plane
have been proposed: a deposited mixture of silica and poly-
styrene colloids subjected to an ac electric field in an elec-
tromagnetically passive liquid �11�; and macroscopic par-
ticles with permanent magnetic dipole moments on an air-
water interface �12�. The former is, however, not simply
regarded as a system of IDPs in a plane; electrohydrody-
namic flow �13� and thermal diffusion affect the structure
formation of the colloids. In contrast, the latter is an appro-
priate example and gives qualitative agreement with the
results of the simulations �10,12�.

In this paper, we examine the dynamic features of the
CCA of IDPs experimentally and numerically; this is a
simple and realistic model of attraction-limited CCA
�ALCA� of dipolar particles, or a limiting case in which ther-
mal diffusion is ignored. ALCA has been given little impor-
tance, except for systems of electrorheological �ER� suspen-
sions in a strong electric field �4�. However, they do not
satisfy us because of the anisotropy of dipole-dipole interac-
tions, which is different from the characteristics of the IDPs
described above. The CCA of IDPs is also interesting as
ALCA of oppositely charged particles, in connection with
the heteroaggregation of oppositely charged colloids �14,15�.

We find the fast decrease of the number of even-sized
clusters for relatively smaller clusters. We also obtain the
average cluster size and the total number of clusters as func-
tions of time. They obey the power-law behavior and their
dynamic exponents are equal if the concentration of IDPs is
lower than the threshold. It is considered that the dynamic
scaling theory �16� is valid within the concentration range.
Above the threshold, the dependence of their dynamics on
particle-size dispersity is found. Furthermore, we consider
the physical origin of the dynamic exponents in the dilute
limit.

*Electronic address: yoshioka@acolyte.t.u-tokyo.ac.jp
†Electronic address: vargai@dtp.atomki.hu
‡Electronic address: feri@dtp.atomki.hu
§Electronic address: yukawa@ap.t.u-tokyo.ac.jp
�Electronic address: ito@ap.t.u-tokyo.ac.jp

PHYSICAL REVIEW E 72, 061403 �2005�

1539-3755/2005/72�6�/061403�6�/$23.00 ©2005 The American Physical Society061403-1

http://dx.doi.org/10.1103/PhysRevE.72.061403


II. METHODS

A. Experimental setup

We constructed an experimental technique that enables a
straightforward and controllable realization of binary mono-
layers with particles of oppositely oriented dipole moments
constrained to be perpendicular to the plane of motion. In the
experimental setup, macroscopic particles are constructed by
attaching magnetized cylindrical metal particles to floats.
The floats are cork disks that ensure the confinement of com-

posite particles to the air-water interface �floating� and pre-
vent flipping, constraining the dipole moment of the particles
perpendicular to the water surface. The two components of
the system are realized by the two opposite orientations of
the dipole moments of the particles. To ensure that all the
particles are released at the same time from the initial posi-
tion, a hard plastic net was fixed on a wooden frame, which
can float on the surface of water. The initial state is prepared
such that a square container of side length L=500 mm is
filled with water with a plastic net floating on the surface.

FIG. 1. �Color online� Snap-
shots of typical configuration in
experiment ��a� and �b�� and simu-
lation ��c�–�f��: �a� �=0.075,
�=1.0; �b� �=0.105, �=1.0; �c�
�=0.05, �=1.0; �d� �=0.125,
�=1.0; �e� �=0.05, �=2.6; �f�
�=0.175, �=2.6. Red �dark gray�
disks are particles with upward di-
pole moments, and yellow or
green �light gray� disks are those
with downward dipole moments.
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The particles are placed randomly onto the net which keeps
them fixed in their initial position. By immersing the net into
the container, the particles start to move at the same time
resulting in a cluster-cluster aggregation. In all the experi-
ments, the particle radius R and the magnitude of dipole
moments � were the same for the two components. The con-
centration of the system, �=N�R2 /L2, was controlled by
varying the number of particles N, while the size of the con-
tainer was fixed.

Experiments were carried out at three different concentra-
tions �=0.05, 0.075, and 0.105 repeating the experiments
ten times with different random initial states. The time evo-
lution of the aggregation was recorded using a video camera.
Quantities characterizing the dynamics of aggregation were
determined from the digital image, averaging over indepen-
dent realizations. Figures 1�a� and 1�b� show typical snap-
shots of the experiments.

B. Numerical simulation

In contrast, we construct a numerical model to understand
the behavior of the particles shown in the experiment. We
treat an ensemble �N= �i�N �1� i�N� of N=750 particles
in a periodic square box of side length L. Each particle has a
pointlike dipole moment in its center, and the dipole moment
is fixed to be perpendicular to the plane of motion during
the time evolution of the system. There are two types of
particles in this system: type � consists of N+ particles with
radius R+ and dipole moment �+	0 pointing upward,
and type � consists of N−=N−N+ particles with radius R−
and dipole moment �−
0 pointing downward. We consider
only three forces that a particle i��N experiences: the
dipolar force

Fij
dd = −

3�i� j

rij
4 nij ,

the Stokes force

Fi
hyd = − �i

dri

dt
,

and the Hertz contact force

Fij
pp = − kij

pphijH�hij�nij;

j��N \ �i� is another particle, ri is the position vector of the
center of i, �i=�+ or �− is the dipole moment of i, Ri is the
radius of i, rij = �r j −ri�, nij = �r j −ri� /rij, hij =Ri+Rj −rij, and
H�x� is the Heaviside step function.

The system is supposed to be fully dissipative; hence the
equation of motion of this system is written as

	
j��N\�i�

�Fij
dd + Fij

pp� + Fi
hyd = 0

for any i��N. It is not necessary to set the coefficients ��i�
and �kij

pp� in detail so that we take �i to be unity for any i and
choose kij

pp as a constant kpp independent of i and j. There-
fore, the equation of motion is rewritten as

dri

dt
= − 	

j��N\�i�

3�i� j

rij
4 + kpphij

3/2H�hij��nij . �1�

We perform molecular dynamics �MD� simulations, i.e.,
the time evolution of the system is followed by solving Eq.
�1� numerically, using the adaptive fourth-order Runge-Kutta
scheme. To ensure the disorder of the initial configuration,
pointlike particles without dipole moments are first placed in
the simulation box randomly and independently. Then the
particles are gradually enlarged, i.e., their radii are gradually
increased such that after each increment, MD simulation is
performed taking into account the repulsive force arising be-
tween overlapping particles. As a result of the simulation, all
the particles can find an equilibrium, overlap-free position.
This procedure is repeated until the radius of each particle i
reaches the desired Ri. After these initialization procedures,
we perform the MD simulation of the particles with dipole
moments. For each particle i, the dipolar forces Fij

dd are
summed up for the particles �j��N \ �i� �ri= �xi ,yi� such that
r j � �xi−L /2 ,xi+L /2�� �yi−L /2 ,yi+L /2��. Thus, the cutoff
length of the dipolar forces is approximately L /2.

Simulations have been carried out fixing �r=N− /N+=1.0
and �r= ��− /�+�=1.0, and varying the concentration
�= �N+�R+

2+N−�R−
2� /L2. In addition, we set the relative

particle radius �=R− /R+ to 1.0 and 2.6. The latter means that
a smaller �type �� particle cannot touch four larger �type ��
particles at the same time. Figures 1�c�–1�f� show typical
snapshots of the simulations.

III. RESULTS

A. Cluster discrimination

We observe behavior peculiar to binary systems, which
was not observed in previous studies of CCA of dipolar par-
ticles. Figure 2 shows a typical graph of the number of clus-
ters ns�t�L2 for each small s as a function of time t; ns�t� is
the dynamic cluster size distribution, or the number of clus-
ters involving s particles �s-clusters� per unit area at time t. It

FIG. 2. �Color online� Time evolution of the numbers of
s-clusters for �=0.1, �=1.0. The thick solid line denotes the total
number of clusters.
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is clearly observed that, for relatively smaller s’s such as
s=1, 2, 3, and 4, the number of even-sized clusters decreases
faster than that of odd-sized ones. That is, the number of
neutral clusters decays faster than that of charged ones. This
behavior is known as cluster discrimination in CCA of op-
positely charged colloids �14,15�. Since smaller clusters have
chainlike structures �see Figs. 1�a�, 1�c�, and 1�e��, they can
join other clusters only at chain ends. Odd-sized clusters,
however, can form aggregates only with clusters that have
oppositely charged particles, at least, at one of their ends
because they have equally charged particles at both ends. In
contrast, even-sized clusters have differently charged par-
ticles at both ends. Therefore, the reactivities of even-sized
clusters are higher than those of odd-sized ones.

B. Dynamic exponents

Figures 3�a�–3�f� show the average cluster size

Sav�t� =

	
s

s2ns�t�

	
s

sns�t�

and the total number of clusters

Nc�t� = 	
s

ns�t�L2

for each concentration as functions of time t. It appears that
the curves have a time range that obeys the power-law be-

FIG. 3. �Color online� Log-log
plots of the average cluster size
��a�, �c�, and �e�� and total number
of clusters ��b�, �d�, and �f�� as
functions of time. �a� and �b� are
the result of the experiment at
�=1.0, �c� and �d� that of simula-
tion at �=1.0, and �e� and �f� that
of simulation at �=2.6.
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havior: Sav�t�� tz and Nc�t�� t−z�. In this range, however, the
curves slightly oscillate because of cluster discrimination;
the curves go upward more gently when one type of even-
sized clusters is disappearing, and they become steeper when
it has disappeared. Nevertheless, we can estimate the dy-
namic exponents z and z�. Table I and Fig. 4 show the dy-
namic exponents z and z� as functions of concentration �.

To interpret these results, we consider the dynamic scaling
theory first proposed by Vicsek and Family for DLCA �16�.
They assume that the dynamic cluster size distribution is
written as

ns�t� � s−2f
 s

s*�t�
� � t−ws−
g
 s

s*�t�
� ,

where s*�t� is the typical cluster size of CCA, and f�x� and
g�x� are scaling functions. According to the theory, if 

1
then Sav�t��s*�t� and Nc�t���s*�t��−1, and thus z=z� is de-
rived. In the dilute limit, it is expected that various types of
CCA are described by the Smoluchowski equation, and the
dynamic scaling theory can be derived using that equation
�17�.

In Fig. 4, the statistical errors of the dynamic exponents z
and z� are rather small for the size of the symbols, and
their systematic errors are on the order of the deviation of
the curves. Therefore, we find that z and z� tend to be
equal at ��0.05, while there is a discrepancy between
the exponents at �	0.05. Because we verify that 

1
within the concentration range shown in Fig. 4, it is shown
that there is a threshold concentration �c=0.05 above
which the conventional dynamic scaling theory does not ap-
ply. Furthermore, we find that the exponents seem to be in-
dependent of particle-size dispersity � at �=�c while they
depend on � at �	�c. This means that the dynamics of
IDPs does not depend on � if the dynamic scaling theory is
valid.

C. Dynamic exponents in dilute limit

In Fig. 4, it appears that the dynamic exponents become
close to 0.2–0.25 in the dilute limit. This value is much
smaller than that of other CCAs, particularly that of ALCA
of ER suspensions in a strong electric field �4�. This means
that the dynamics of IDPs cannot be described using a hier-
archical model �18� approach similar to that carried out by
See and Doi �4�, in which only the two-body collision be-
tween nearest neighbor 2k-clusters is considered at the kth
step. In fact, because the typical cluster size is of the same
order as �−1 when the CCA of chains crosses that of fractal
aggregates �10�, we can consider that all clusters are straight
chains if ��1/N. The potential energy between two straight
IDP chains of the same size s=2k and of the center-of-mass
distance r is expressed as

U�r� = �2	
n=1

s

	
m=1

s
�− 1�n+m

�dnm�r��3 ,

where dnm�r� is the distance between the nth IDP of one
chain and the mth IDP of the other. If r�s�R++R−� then

U�r� �
��s�R+ + R−��2

r5 ,

and thus z=2/5 is derived using the theory of See and Doi
�4�. This value deviates from what we obtain, z��→0�
=0.2–0.25. This means that, in the case of the CCA of IDPs,
the surrounding clusters and their screening effect are not
negligible.

IV. SUMMARY

In summary, we have proposed the CCA of IDPs as a
model of ALCA, and have studied its dynamic features
experimentally and numerically. We have found that the
reactivities of even-sized clusters are higher than those of

FIG. 4. �Color online� Dependence of dynamic exponents z and
z� on concentration � for �=1.0 �solid lines� and 2.6 �dashed
lines� obtained from simulations. The error bars are omitted because
the statistical errors of the exponents are small enough for the
size of the error bars to fall within the order of the size of the
symbols.

TABLE I. Dynamic exponents z and z�.

�

Experiment Simulation

�=1 �=1 �=2.6

z z� z z� z z�

0.02 0.23 0.24

0.03 0.27 0.26

0.05 0.48 0.41 0.31 0.31 0.29 0.29

0.075 0.58 0.48 0.36 0.34 0.34 0.30

0.1 0.39 0.37 0.37 0.33

0.105 0.97 0.71

0.125 0.46 0.42 0.41 0.36

0.15 0.45 0.40

0.175 0.53 0.45

0.2 0.62 0.44

0.225 0.68 0.56
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odd-sized ones. We have also found that the average cluster
size and total number of clusters obey power-law behavior,
and that the dynamic scaling theory explains the behavior
of these quantities within the concentration range
���c=0.05. Particle-size dispersity affects the behavior
only at �	�c. In the dilute limit, the dynamic exponents
become close to 0.2–0.25. This is because the screening
of the surrounding clusters slows down the collisions of
clusters.
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